Quantitative X-Ray Diffractometry - Lev S. Zevin 2012-12-06 One of the most important techniques for determining the atomic structure of a material is X-ray diffraction. One of the great problems of the technique, however, is the fact that only the intensity of the diffraction pattern can be measured, not its phase. The inverse problem, of determining the structure from the pattern thus contains ambiguities that must be resolved by other means. Quantitative X-ray analysis provides one way to resolve this phase problem: mixing the material in question with a material of known structure yields interferences.
that can be analyzed to yield the unknown phases. Invented in 1916, but little used at the time, the technique has seen a recent revival due to the development of extremely precise X-ray diffractometers coupled with powerful computers.

Quantitative X-Ray Spectrometry, Second Edition, Ron Jenkins 1995-04-26 This work covers important aspects of X-ray spectrometry, from basic principles to the selection of instrument parameters and sample preparation. This edition explicates the use of combined X-ray fluorescence and X-ray diffraction data, and features new applications in environmental studies, forensic science, archeometry and the analysis of metals and alloys, minerals and ore, ceramic materials, catalysts and trace metals.; This work is intended for spectroscopists, analytical chemists, materials scientists, experimental physicists, mineralogists, biologists, geologists and graduate-level students in these disciplines.

Advances in the Characterization of Industrial Minerals, G.E. Christidis 2011-08-31 The advancement of human civilization has been intimately associated with the exploitation of raw materials. In fact the distinction of the main historical eras is based on the type of raw materials used. Hence, passage from the Paleolithic and Neolithic Age to the Bronze Age is characterized by the introduction of basic metals mainly copper, zinc and tin in human activities; the Iron Age is marked by the use of iron as the predominant metal. The use of metals has increased and culminated with the industrial revolution in the mid-eighteenth century, which marked the onset of the industrial age in the western world. Since then the importance of metals has gradually been surpassed by industrial minerals in the industrialized countries. Industrial minerals are raw materials used by industry for their physical and/or chemical properties. Characterization of industrial minerals is important for their
assessment and can be demanding and often complicated. This new volume, co-published by the European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, is based on papers presented at an EMU-Erasmus IP School which was held in the Technical University of Crete, Chania, Greece. The aim of the School was to describe advances in some of the analytical methods used to characterize industrial minerals and to propose additional methods which are currently not used for this purpose.

Modern Powder Diffraction—David L. Bish
2018-12-17 Volume 20 of Reviews in Mineralogy attempted to: (1) provide examples illustrating the state-of-the-art in powder diffraction, with emphasis on applications to geological materials; (2) describe how to obtain high-quality powder diffraction data; and (3) show how to extract maximum information from available data. In particular, the nonambient experiments are examples of some of the new and exciting areas of study using powder diffraction, and the interested reader is directed to the rapidly growing number of published papers on these subjects. Powder diffraction has evolved to a point where considerable information can be obtained from ug-sized samples, where detection limits are in the hundreds of ppm range, and where useful data can be obtained in milliseconds to microseconds. We hope that the information in this volume will increase the reader's access to the considerable amount of information contained in typical diffraction data.

Routine Quantitative Analysis by X-ray Diffraction—James W. Ballard 1946

Quantitative Analysis by X-ray Diffraction—James W. Ballard 1940

Introduction to X-Ray Powder Diffractometry—Ron Jenkins 2012-08-29 When
bombarded with X-rays, solid materials produce distinct scattering patterns similar to fingerprints. X-ray powder diffraction is a technique used to fingerprint solid samples, which are then identified and cataloged for future use—much the way the FBI keeps fingerprints on file. The current database of some 70,000 material prints has been put to a broad range of uses, from the analysis of moon rocks to testing drugs for purity. Introduction to X-ray Powder Diffractometry fully updates the achievements in the field over the past fifteen years and provides a much-needed explanation of the state-of-the-art techniques involved in characterizing materials. It covers the latest instruments and methods, with an emphasis on the fundamentals of the diffractometer, its components, alignment, calibration, and automation. The first three chapters outline diffraction theory in clear language, accessible to both students and professionals in chemistry, physics, geology, and materials science. The book's middle chapters describe the instrumentation and procedures used in X-ray diffraction, including X-ray sources, X-ray detection, and production of monochromatic radiation. The chapter devoted to instrument design and calibration is followed by an examination of specimen preparation methods, data collection, and reduction. The final two chapters provide in-depth discussions of qualitative and quantitative analysis. While the material is presented in an orderly progression, beginning with basic concepts and moving on to more complex material, each chapter stands on its own and can be studied independently or used as a professional reference. More than 230 illustrations and tables demonstrate techniques and clarify complex material. Self-contained, timely, and user-friendly, Introduction to X-ray Powder Diffractometry is an enormously useful text and professional reference for analytical chemists, physicists, geologists and materials scientists, and upper-level undergraduate and graduate students in materials science and analytical chemistry. X-ray powder diffractometry—a technique that has matured significantly in recent years—is used to identify solid samples and
determine their composition by analyzing the so-called "fingerprints" they generate when X-rayed. This unique volume fulfills two major roles: it is the first textbook devoted solely to X-ray powder diffractometry, and the first up-to-date treatment of the subject in 20 years. This timely, authoritative volume features: * Clear, concise descriptions of both theory and practice-including fundamentals of diffraction theory and all aspects of the diffractometer * A treatment that reflects current trends toward automation, covering the newest instrumentation and automation techniques * Coverage of all the most common applications, with special emphasis on qualitative and quantitative analysis * An accessible presentation appropriate for both students and professionals * More than 230 tables and illustrations

Introduction to X-ray Powder Diffractometry, a collaboration between two internationally known and respected experts in the field, provides invaluable guidance to anyone using X-ray powder diffractometers and diffractometry in materials science, ceramics, the pharmaceutical industry, and elsewhere.

Computerized System for Quantitative X-ray Diffraction Analysis of Pyrite in Coal-Richard R. Schehl 1973

Quantitative X-ray Diffraction Analysis-E Asada 1988

Quantitative X-ray Determination of Quartz and Pyrite in Dusts-H. Machacek 1970 "This investigation concerns the quantitative direct X-ray determination of quartz and pyrite in airborne mine dusts. A new technique developed by Leroux and Powers has been successfully applied and some new details have been found. The method provides reproducible analyses of quartz and pyrite in dust samples. When the calibration curves of the pure components have been made and certain sources of error are kept within appropriate limits, quartz and pyrite can be determined down to 30 [μg/cm²] when..."
Reference Intensity Method of Quantitative X-ray Diffraction Analysis - Briant L. Davis 1988

Powder Diffraction - 1995

Advances in X-Ray Analysis - Camden R. Hubbard 1983-06 At the Denver X-Ray Conference, the topic for the plenary lectures alternates annually between x-ray diffraction and x-ray fluorescence. This year is a "diffraction" year, and the theme is accuracy in powder diffraction. Instead of comprehensive coverage, such as was attempted at the Accuracy in Powder Diffraction Meeting held at the National Bureau of Standards in 1978, this meeting focuses on recent developments in measurement accuracy of two-theta and intensity. The focus on accuracy, from the practical point of view, is important in a wide range of x-ray diffraction measurements.

Accurate data improve our ability to identify phases in a mixture using the Powder Diffraction File. Improved accuracy is essential for better characterization of the lattice, crystallite size, strain and structure. Finally, the accuracy of quantitative analysis is of great concern in many laboratories. The five invited papers of the plenary session give a broad perspective of recent activity throughout the world on uses of more accurate data, on methods to achieve greater accuracy, and on fundamental factors affecting the accuracy. The scope of the conference, however, is much broader than that of the plenary session. The workshops lead off with many practical aspects of x-ray analysis. Many of the contributed papers expand on the theme of accuracy in x-ray powder diffraction. In particular, the session on XRD quantitative phase analysis provides an exceptional coverage of the limitations in quantitative analysis and of the techniques being employed to improve the results.
Quantitative X-Ray Diffraction Analysis of Cement and Clinker-LJ. Struble 1983 This comprehensive bibliography covers analysis of portland cement and concrete by quantitative X-ray diffraction. The citation and an abstract is provided for each reference. The bibliography was prepared at the request of the quantitative X-ray diffraction analysis task group of ASTM Subcommittee C01.23.

Diffraction Analysis of the Microstructure of Materials-Eric J. Mittemeijer 2013-11-21 Overview of diffraction methods applied to the analysis of the microstructure of materials. Since crystallite size and the presence of lattice defects have a decisive influence on the properties of many engineering materials, information about this microstructure is of vital importance in developing and assessing materials for practical applications. The most powerful and usually non-destructive evaluation techniques available are X-ray and neutron diffraction. The book details, among other things, diffraction-line broadening methods for determining crystallite size and atomic-scale strain due, e.g. to dislocations, and methods for the analysis of residual (macroscale) stress. The book assumes only a basic knowledge of solid-state physics and supplies readers sufficient information to apply the methods themselves.

X-Ray Diffraction by Polycrystalline Materials-René Guinebretière 2013-03-01 This book presents a physical approach to the diffraction phenomenon and its applications in materials science. An historical background to the discovery of X-ray diffraction is first outlined. Next, Part 1 gives a description of the physical phenomenon of X-ray diffraction on perfect and imperfect crystals. Part 2 then provides a detailed analysis of the instruments used for the characterization of powdered materials or thin films. The description of the processing of measured signals and their results is also covered, as are recent developments relating to
quantitative microstructural analysis of powders or epitaxial thin films on the basis of X-ray diffraction. Given the comprehensive coverage offered by this title, anyone involved in the field of X-ray diffraction and its applications will find this of great use.

The X-ray Identification and Crystal Structures of Clay Minerals- 1963

Industrial Applications of X-Ray Diffraction- Frank Smith 1999-09-22 By illustrating a wide range of specific applications in all major industries, this work broadens the coverage of X-ray diffraction beyond basic tenets, research and academic principles. The book serves as a guide to solving problems faced everyday in the laboratory, and offers a review of the current theory and practice of X-ray diffraction, major advances and potential uses.

X-Ray Diffraction Crystallography- Yoshio Waseda 2011-03-18 X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential
points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements.

Structures of layer silicates; order-disorder in clay mineral structures; interlayer and intercalation complexes of clay minerals; interstratified clay minerals; X-ray diffraction procedures for clay mineral identification; associated minerals; quantitative X-ray mineral analysis of clays; appendix: tables for the determination of d in Å from 2θ for the Ka and Kb radiations of copper, cobalt and iron.

Clay Mineral Cements in Sandstones - Richard Worden 2009-03-05
Clay minerals are one of the most important groups of minerals that destroy permeability in sandstones. However, they also react withdrilling and completion fluids and induce fines migration during hydrocarbon production. They are a very complex family of minerals that are routinely intergrown with each other, contain a wide range of solid solutions and form by a variety of processes under a widerange temperatures and rock and fluid compositions. In this volume, clay minerals in sandstones are reviewed in terms of their mineralogy and general occurrence, their stable and radiogenic isotope geochemistry, XRD quantification, their effectson the petrophysical properties of sandstones and their relationships to sequence stratigraphy and palaeoclimate. The controls on various clay minerals are addressed and a variety of geochemical issues, including the importance of mass flux, links to carbonate mineral diagenesis and linked clay mineral diagenesis in interbedded mudstone-sandstone are explored. A number of casestudies are included for kaolin, illite and chlorite cements, and the occurrence of smectite in sandstone is reviewed. Experimentalrate data for clay cements in sandstones are reviewed and there are two model-based case studies that address the rates.
of growth of kaolinite and illite. The readership of this volume will include sedimentologists and petrographers who deal with the occurrence, spatial and temporal distribution patterns and importance of clay mineral cements in sandstones, geochemists involved in unraveling the factors that control clay mineral cement formation in sandstones and petroleum geoscientists involved in predicting clay mineral distribution in sandstones. The book will also be of interest to geologists involved in palaeoclimate studies basin analysis. Latest geochemical data on clays in sandstones provides important information for geologists involved in basin analysis, sandstone petrology and petroleum geology. If you are a member of the International Association of Sedimentologists (IAS), for purchasing details, please see: http://www.iasnet.org/publications/details.asp?code=SP34

Mineralogical studies of sedimentary rocks or sedimentary deposits are often required for engineering geological projects. X-ray diffraction analytical techniques are usually employed for this purpose but these methods are often complex and involved. Several different X-ray diffraction methods are described and a single suitable procedure is chosen and described in detail. The chosen method includes analysis of both clay and non-clay minerals and qualitative and quantitative interpretation.

Advances in X-Ray Analysis - Camden R. Hubbard 2011-11-10

At the Denver X-Ray Conference, the topic for the plenary lectures alternates annually between x-ray diffraction and x-ray fluorescence. This year is a "diffraction" year, and the theme is accuracy in powder diffraction. Instead of comprehensive coverage, such as was attempted at the Accuracy in Powder Diffraction Meeting held at the National Bureau of Standards in 1978, this meeting focuses on recent developments in measurement accuracy.
of two-theta and intensity. The focus on accuracy, from the practical point of view, is important in a wide range of x-ray diffraction measurements. Accurate data improve our ability to identify phases in a mixture using the Powder Diffraction File. Improved accuracy is essential for better characterization of the lattice, crystallite size, strain and structure. Finally, the accuracy of quantitative analysis is of great concern in many laboratories. The five invited papers of the plenary session give a broad perspective of recent activity throughout the world on uses of more accurate data, on methods to achieve greater accuracy, and on fundamental factors affecting the accuracy. The scope of the conference, however, is much broader than that of the plenary session. The workshops lead off with many practical aspects of x-ray analysis. Many of the contributed papers expand on the theme of accuracy in x-ray powder diffraction. In particular, the session on XRD quantitative phase analysis provides an exceptional coverage of the limitations in quantitative analysis and of the techniques being employed to improve the results.

Rietveld Refinement in the Characterization of Crystalline Materials-Igor Djerdj 2019-01-28
This book is a printed edition of the Special Issue "Rietveld Refinement in the Characterization of Crystalline Materials" that was published in Crystals

Quantitative Analysis of UO2-U3O8 Mixtures by X-ray Diffraction-F. N. Bensey 1949

X-ray powder diffraction analysis is used in the cement industry as a direct analytical method for phase identification and quantitative analysis of clinker and cements. Quantitative methods initially relied on the development of calibration curves, employing
multiple reference mixtures of cement phases with an internal standard to develop a plot of
diffraction peak intensity ratios vs. mass fraction
ratios. Obstacles to this approach were the
availability of reference standards that
adequately replicated those phases in the clinker
or cement, and the ability to accurately measure
diffraction peak intensities because of severe
peak overlap. The Rietveld method for analysis of
powder diffraction data addresses both of these
difficulties through use of refineable crystal
structure models to calculate the individual
phase diffraction patterns and a whole-pattern
fitting procedure to minimize the difference
between the measured diffraction pattern and set
of calculated phase patterns. This approach has
revolutionized the application of X-ray powder
diffraction in many scientific disciplines,
including that of hydraulic cements, but can be a
complicated method to learn. This tutorial is
intended to provide an introduction to the
application of Rietveld analysis to portland
cement clinker and cements using examples
developed from one of the NIST SRM clinkers
and two portland cements.

X-Ray Diffraction - C. Suryanarayana 2013-06-29
In this, the only book available to combine both
theoretical and practical aspects of x-ray
diffraction, the authors emphasize a "hands on"
approach through experiments and examples
based on actual laboratory data. Part I presents
the basics of x-ray diffraction and explains its use
in obtaining structural and chemical information.
In Part II, eight experimental modules enable the
students to gain an appreciation for what
information can be obtained by x-ray diffraction
and how to interpret it. Examples from all classes
of materials -- metals, ceramics, semiconductors,
and polymers -- are included. Diffraction patterns
and Bragg angles are provided for students
without diffractometers. 192 illustrations.

Qualitative and Quantitative X-ray
Diffraction Analysis for Forensic
Examination of Duct Tapes - Rebecca E. Bucht
2010 This research has shown that the use of quantitative XRD analysis of duct tapes can differentiate between some duct tape samples from rolls that cannot be distinguished by current, routine analysis methods.

Quantitative X-Ray Diffraction Phase Analysis and Its Application to the Positive Plate of the Lead/acid Battery-R. J. Hill 1982

Analytical Geomicrobiology-Janice P. L. Kenney 2019-07-31 A comprehensive handbook outlining state-of-the-art analytical techniques used in geomicrobiology, for advanced students, researchers and professional scientists.

Quantitative X-ray Diffraction Analysis- Llewellyn Everard Copeland 1958

Industrial Applications of X-Ray Diffraction-Frank Smith 1999-09-22 By illustrating a wide range of specific applications in all major industries, this work broadens the coverage of X-ray diffraction beyond basic tenets, research and academic principles. The book serves as a guide to solving problems faced everyday in the laboratory, and offers a review of the current theory and practice of X-ray diffraction, major

Elements of X Ray Diffraction-B. D. Cullity 2018-11-10 This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this
work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

X-Ray Diffraction Procedures - Harold P. Klug
1974-05-28

Quantitative Study of Some Organic Compounds by X-ray Diffraction - Mark A. Goldschmidt 1968
A fast and reliable method is described for the quantitative analysis of some organic compounds by X-ray diffraction. The method partially eliminates some of the variables restricting the use of X-ray diffraction in a study of this nature. A specimen holder is described which permits the sample to spin during the analysis. The use of an internal standard greatly increased the reproducibility attained in this study.
report. No instrumental corrections were applied to the data obtained. (Author).

Standardless Quantitative X-ray Diffraction Phase Analysis of Low Temperature Coal Ash (LTA)-Garold Leroy Bryant 1986

The Rietveld Method-R. A. Young 1995 The Rietveld method is now widely recognized as uniquely valuable for structural analyses of nearly all classes of crystalline materials not available as single crystals. This book is the first graduate text to provide a comprehensive introduction to the technique, with contributors from internationally recognized authorities in the field.

Quantitative X-ray Diffraction Analysis of Oxides Formed on Superalloys-Ralph G. Garlick 1972

Industrial Waste-Herbert Pöllmann 2021-08-23
Industrial residues are obtained from all treatments of raw materials in industry during the process of mining, raw materials treatment and final usage. During these processes of enrichment, optimization and utilization of raw materials only part of the original material can be used for the dedicated application and some left-over parts remain. This contribution focuses on residues like mining overburdens, ore residues and ore processing residues like slags, but also on incineration ashes and water purification muds. Natural materials like pozzolanes, due to their potential of CO2-reduction, are also included. Based on this knowledge secondary reusable materials due to their chemical, physical and mineralogical properties can be identified. Also different characterization methods for analysing the potential for further application of these residues are included.